22,990 research outputs found

    Solving magnetostatic field problems with NASTRAN

    Get PDF
    Determining the three-dimensional magnetostatic field in current-induced situations has usually involved vector potentials, which can lead to excessive computational times. How such magnetic fields may be determined using scalar potentials is reviewed. It is shown how the heat transfer capability of NASTRAN level 17 was modified to take advantage of the new method

    An Investigation of the Ability to Recover from Transients Following Failures for Single-Pilot Rotorcraft

    Get PDF
    A moving-base simulation was conducted to investigate a pilot's ability to recover from transients following single-axis hard-over failures of the flight-control system. The investigation was performed in conjunction with a host simulation that examined the influence of control modes on a single pilot's ability to perform various mission elements under high-workload conditions. The NASA Ames large-amplitude-motion Vertical Motion Simulator (VMS) was utilized, and the experimental variables were the failure axis, the severity of the failure, and the airspeed at which the failure occurred. Other factors, such as pilot workload and terrain and obstacle proximity at the time of failure, were kept as constant as possible within the framework of the host simulation task scenarios. No explicit failure warnings were presented to the pilot. Data from the experiment are shown, and pilot ratings are compared with the proposed handling-qualities requirements for military rotorcraft. Results indicate that the current proposed failure transient requirements may need revision

    The dynamic analysis of submerged structures

    Get PDF
    Methods are described by which the dynamic interaction of structures with surrounding fluids can be computed by using finite element techniques. In all cases, the fluid is assumed to behave as an acoustic medium and is initially stationary. Such problems are solved either by explicitly modeling the fluid (using pressure or displacement as the basic fluid unknown) or by using decoupling approximations which take account of the fluid effects without actually modeling the fluid

    Partially Unbiased Entangled Bases

    Full text link
    In this contribution we group the operator basis for d^2 dimensional Hilbert space in a way that enables us to relate bases of entangled states with single particle mutually unbiased state bases (MUB), each in dimensionality d. We utilize these sets of operators to show that an arbitrary density matrix for this d^2 dimensional Hilbert space system is analyzed by via d^2+d+1 measurements, d^2-d of which involve those entangled states that we associate with MUB of the d-dimensional single particle constituents. The number d2+d+1d^2+d+1 lies in the middle of the number of measurements needed for bipartite state reconstruction with two-particle MUB (d^2+1) and those needed by single-particle MUB [(d^2+1)^2].Comment: 5 page

    Optimized pulse sequences for suppressing unwanted transitions in quantum systems

    Full text link
    We investigate the nature of the pulse sequence so that unwanted transitions in quantum systems can be inhibited optimally. For this purpose we show that the sequence of pulses proposed by Uhrig [Phys. Rev. Lett. \textbf{98}, 100504 (2007)] in the context of inhibition of environmental dephasing effects is optimal. We derive exact results for inhibiting the transitions and confirm the results numerically. We posit a very significant improvement by usage of the Uhrig sequence over an equidistant sequence in decoupling a quantum system from unwanted transitions. The physics of inhibition is the destructive interference between transition amplitudes before and after each pulse.Comment: 5 figure

    An Interneuron Circuit Reproducing Essential Spectral Features of Field Potentials

    Get PDF
    This document is the Accepted Manuscript version of the following article: Reinoud Maex, ‘An Interneuron Circuit Reproducing Essential Spectral Features of Field Potentials’, Neural Computation, March 2018. Under embargo until 22 June 2018. The final, definitive version of this paper is available online at doi: https://doi.org/10.1162/NECO_a_01068. © 2018 Massachusetts Institute of Technology. Content in the UH Research Archive is made available for personal research, educational, and non-commercial purposes only. Unless otherwise stated, all content is protected by copyright, and in the absence of an open license, permissions for further re-use should be sought from the publisher, the author, or other copyright holder.Recent advances in engineering and signal processing have renewed the interest in invasive and surface brain recordings, yet many features of cortical field potentials remain incompletely understood. In the present computational study, we show that a model circuit of interneurons, coupled via both GABA(A) receptor synapses and electrical synapses, reproduces many essential features of the power spectrum of local field potential (LFP) recordings, such as 1/f power scaling at low frequency (< 10 Hz) , power accumulation in the γ-frequency band (30–100 Hz), and a robust α rhythm in the absence of stimulation. The low-frequency 1/f power scaling depends on strong reciprocal inhibition, whereas the α rhythm is generated by electrical coupling of intrinsically active neurons. As in previous studies, the γ power arises through the amplifica- tion of single-neuron spectral properties, owing to the refractory period, by parameters that favour neuronal synchrony, such as delayed inhibition. The present study also confirms that both synaptic and voltage-gated membrane currents substantially contribute to the LFP, and that high-frequency signals such as action potentials quickly taper off with distance. Given the ubiquity of electrically coupled interneuron circuits in the mammalian brain, they may be major determinants of the recorded potentials.Peer reviewe

    Scaling of Local Slopes, Conservation Laws and Anomalous Roughening in Surface Growth

    Full text link
    We argue that symmetries and conservation laws greatly restrict the form of the terms entering the long wavelength description of growth models exhibiting anomalous roughening. This is exploited to show by dynamic renormalization group arguments that intrinsic anomalous roughening cannot occur in local growth models. However some conserved dynamics may display super-roughening if a given type of terms are present.Comment: To appear in Phys. Rev. Lett., 4 pages in RevTeX style, no fig

    Flexible body dynamic stability for high performance aircraft

    Get PDF
    Dynamic equations which include the effects of unsteady aerodynamic forces and a flexible body structure were developed for a free flying high performance fighter aircraft. The linear and angular deformations are assumed to be small in the body reference frame, allowing the equations to be linearized in the deformation variables. Equations for total body dynamics and flexible body dynamics are formulated using the hybrid coordinate method and integrated in a state space format. A detailed finite element model of a generic high performance fighter aircraft is used to generate the mass and stiffness matrices. Unsteady aerodynamics are represented by a rational function approximation of the doublet lattice matrices. The equations simplify for the case of constant angular rate of the body reference frame, allowing the effect of roll rate to be studied by computing the eigenvalues of the system. It is found that the rigid body modes of the aircraft are greatly affected by introducing a constant roll rate, while the effect on the flexible modes is minimal for this configuration

    A general low frequency acoustic radiation capability for NASTRAN

    Get PDF
    A new capability called NASHUA is described for calculating the radiated acoustic sound pressure field exterior to a harmonically-excited arbitrary submerged 3-D elastic structure. The surface fluid pressures and velocities are first calculated by coupling a NASTRAN finite element model of the structure with a discretized form of the Helmholtz surface integral equation for the exterior fluid. After the fluid impedance is calculated, most of the required matrix operations are performed using the general matrix manipulation package (DMAP) available in NASTRAN. Far field radiated pressures are then calculated from the surface solution using the Helmholtz exterior integral equation. Other output quantities include the maximum sound pressure levels in each of the three coordinate planes, the rms and average surface pressures and normal velocities, the total radiated power and the radiation efficiency. The overall approach is illustrated and validated using known analytic solutions for submerged spherical shells subjected to both uniform and nonuniform applied loads
    corecore